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Executive Summary 
 
 
 
 
The impacts of natural disasters are seldom factored into the determinants of 
development effectiveness. This is partly because these calamities have been considered 
to be purely natural phenomena outside the scope of policy interventions. As a result, 
relief and reconstruction are taken into account, but the need for prevention and 
preemptive action is underemphasized.   

 
This way of looking at natural disasters needs to change because human factors are an 
increasingly significant contributor to their frequency and intensity, as this topical 
paper shows. In disaster risk management, preventive measures need to play an 
important role, along with responses in recuperation, if development gains are to be 
protected.  

 
Evaluations by the Asian Development Bank’s (ADB’s) Independent Evaluation 
Department (IED 2012 and 2013) of ADB’s financing to deal with natural disasters in 
Asia and the Pacific region shed light on the effectiveness of projects implemented to 
respond to a variety of these calamities. A report from the World Bank’s Independent 
Evaluation Group (IEG 2006) did the same for the world’s regions. Both evaluations 
highlighted the crucial role of prevention in dealing with hazards of nature.   

 
They also made the case that the underlying causes of the rising incidence of these 
events and their consequences need further research to understand the extent of their 
effect on development. A key question that needs to be addressed is whether climate 
change is a critical factor making climate-related disasters (floods, storms, droughts, 
and heat waves) more intense and more frequent. Establishing a clear association, if 
not causality, will be vital to support more preventive steps, including climate 
mitigation and adaptation. Answering this question became an agenda for continuing 
evaluative research, whose findings form the basis of this topical paper. A working 
paper (Thomas and Lopez 2015) and a background paper (Lopez 2016) reported on 
initial analysis of this question. This paper presents further conclusions and implications 
for development interventions. 

 
The analysis suggests a causal relationship between carbon dioxide accumulation in the 
atmosphere and the frequency of disasters. In practical terms, this equates to about 
one additional major annual disaster in the world that can be attributed to the 
observed annual increases of carbon dioxide accumulation. There is also evidence of a 
negative impact on per capita gross domestic product (GDP) growth in a business-as-
usual scenario in which global climatic indicators continue to deteriorate at recent rates. 
This means that in 20 years, the average rate of per capita GDP growth would be 
reduced by 1.5% just as a consequence of increased climate-related disasters. 

 
The global increase in intense floods, storms, droughts, and heat waves has profound 
implications for development interventions, particularly for Asia and the Pacific—the 
region most at risk. While global efforts are essential, the region must be at the 
forefront of switching to a low-carbon path and calling on other countries to do the 
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same. In growing fast, we also need a strategy to grow differently in a way that values 
all three forms of capital—physical, human, and natural.  

 
Three essential elements for this strategy are proposed. First, disaster resilience needs 
to be built into national growth strategies, both for prevention and recovery. The 
returns on such investments have already been clearly demonstrated in countries with 
the foresight to adopt this strategy. Second, policymakers need to raise the priority of 
urban management as a strategic thrust. Asia’s growth has been characterized by 
increasing urbanization, and many of its major cities are overcrowded and in vulnerable 
geographic settings. Third, climate action needs to be a central component of national 
plans, including the building of resilient communities and peoples, and climate 
mitigation.  



CHAPTER 1 

Introduction 
 
 
 
 

1. The frequency of natural disasters recorded in the Emergency Events Database 
has risen from over 1,300 events in 1975–1984 to over 4,000 in 2005–2015 (Figure 1). 
The number of hydrological and meteorological events increased sharply during this 
period, with the annual number of Category 5 storms tripling between 1980 and 2008 
(IED 2013).1  Although the causal relationship between climate change and natural 
disasters is not fully understood, we are still faced with the fact that the frequency of 
climate-related natural disasters is rising.  
 

 
 
2. The global increase in intense floods, storms, droughts, and heat waves has a 
likely and ominous link to climate change. The literature is growing on the evidence 
linking anthropogenic climate change with natural disasters.2  Drawing attention to 
climate-related disasters, arguably the most tangible manifestation of global warming, 
could help mobilize broader climate action. 3  Doing this would be positive for 

                                                 
1 Hydrometeorological events include floods, storms, and heat waves. Droughts and wildfires are classified 

as climatological events; earthquakes and volcanic eruptions are classified as geophysical events. Category 
5 storms are the most severe, and refer to hurricanes with maximum sustained wind speeds exceeding 249 
kilometers per hour. 

2 See Thomas, Albert, and Hepburn (2014) for more detailed discussion of related literature. 
3 Independent Evaluation Department. 2016. Topical Paper: Mitigating the Impacts of Climate Change and 

Natural Disasters for Better Quality Growth. Asian Development Bank. Manila. Thomas V. 2017. Climate 
Change and Natural Disasters: Transforming Economies and Policies for a Sustainable Future. Asian 
Development Bank. Manila. (forthcoming). 

Figure 1: Global Frequency of Natural Disasters by Type, 1970–2015 

 
Source: Authors’ estimates based on data from the Emergency Event Database of the Centre for Research 
on the Epidemiology of Disasters. http://www.emdat.be (accessed 9 March 2016). 
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development and it could influence the directions taken for economic growth 

worldwide, and pave the way to a much-needed path of green growth.  

 

3. Since 2000, over 1 million people worldwide have died from natural disasters, 

with damages estimated at over $1.7 trillion, according to the Emergency Events 

Database (EM-DAT).
4

 However, clear trends should not be expected in natural disaster 

impacts (Thomas and Lopez 2015). One extreme weather event like Category 5 

Hurricane Sandy will muddle trends and break existing records for damages. 

 

4. From 1970 to 2008, over 95% of deaths from natural disasters occurred in 

developing countries (IPCC 2012). In the decade 2000–2009, a third of global natural 

disasters and almost 80% of deaths occurred in the 40 countries that received the most 

humanitarian aid (Kellet and Sparks 2012). 

 

5. The number of people affected by natural disasters has also been increasing, 

particularly for hydrological disasters. Before the 1990s, 5-year averages did not reach 

50 million people, but this figure doubled after the 1990s and was mostly over 100 

million since then. Global damage from natural disasters has been steadily increasing, 

and is estimated at $145 billion annually in the last 10-year period (2005–2014), 

perhaps five times the annual estimate 2 decades ago (Thomas and Lopez 2015). 

 

6. Without adaptive measures, disaster damages are expected to rise to $185 

billion a year from economic and population growth alone (World Bank and United 

Nations 2010). Risk models estimate the global average annual loss from earthquakes, 

tsunamis, cyclones, and flooding at $314 billion (UNISDR 2015). These estimates would 

be even higher if climate change were incorporated.  

 

 

 

 

                                                
4
 http://www.emdat.be 



 

CHAPTER 2 

Rising Trends and 

Characteristics 

 

 

 

 

7. The Intergovernmental Panel on Climate Change’s disaster risk framework sets 

out three links involving climate-related disasters (IPCC 2014a). First, greenhouse gas 

(GHG) emissions alter atmospheric GHG concentrations and thus affect climate 

variables, specifically temperature and precipitation. Second, changes in climate 

variables affect the frequency of climate-related hazards (IPCC 2012). And third, the 

frequency of climate-related hazards affects the risk of natural disasters (Stott et al. 

2012).  

 

8. Climate-related disaster risk is defined as the expected value of losses, often 

represented as the likelihood of occurrence of hazardous events multiplied by the 

impacts (effects on lives, livelihoods, health, ecosystems, economies, societies, cultures, 

services, and infrastructure) if these events occur. Disaster risks result from the 

interaction of three elements: the hazard itself, the population’s exposure to the hazard, 

and a community’s vulnerability or its ability to withstand the impact of a hazard 

(Peduzzi et al. 2009). 

 

A. Anthropogenic Link to Climate-Related Hazards 

 

9. The Intergovernmental Panel on Climate Change (IPCC) confirms the Earth’s 

warming atmosphere and oceans, diminishing snow and ice, and rising sea levels, 

among other climate changes (IPCC 2014b). The three decades starting from 1983 were 

likely the warmest in the last 1,400 years in the Northern Hemisphere. Greenland and 

the Antarctic ice sheets have been losing mass and, worldwide, glaciers are shrinking.  

 

10. Published research has reached a consensus on the anthropogenic link to 

climate-related hazards. Of the more than 10,000 published research studies on climate 

from 1991 to 2011, 97% of the studies that express a position on anthropogenic global 

warming endorse it (Cook et al. 2013). In a study of 928 abstracts in refereed journals 

from 1993 to 2003, none of the evaluated papers disagreed that human-induced 

climate change had taken place (Oreskes 2004).  

 

11. Humans are emitting GHGs into the Earth’s atmosphere at a substantial and 

increasing rate—currently over 30 billion tons of carbon dioxide (CO
2
) a year, along 

with other GHGs (US EPA 2014). As a result of these emissions, GHG concentrations in 

the atmosphere have also been rising consistently, as have global surface temperatures 

(Figure 2). 
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12. Scientists consider 450 parts per million (ppm) to be the threshold above which 

it will be difficult, if not impossible, to limit a temperature increase to 2 degrees Celsius 

relative to 1850–1900 levels. However, atmospheric CO
2
 concentrations have already 

surpassed 400 ppm, first in early 2014 and then for the first 10 months of 2016. The 

first 8 months of 2016 averaged 405 ppm CO
2
. If CO

2
 concentrations continue to 

increase at a little over 2 ppm annually, as they did during 2005–2014, the planet will 

exceed the 450 ppm in a quarter of a century.  

 

13. Temperature increases of 2 degrees Celsius above 1850–1900 levels could lead 

to dangerous feedback effects, such as the collapse of the Amazon ecology or 

permafrost thawing (Stern 2013). A large fraction of the anthropogenic climate change 

resulting from CO
2
 emissions and ice-sheet-mass loss is irreversible on a multicentury to 

millennial timescale (IPCC 2013). 

 

14. Studies of the 2003 European heat wave and the wintertime droughts in the 

Mediterranean region (1902–2010) confirm that human-induced climate change played 

a role in magnifying the likelihood of these hazards occurring (Hoerling et al. 2012). 

The high temperature of 2014, driven by human activities, exacerbated the California 

2012–2014 drought by 36%, making it the worst recorded drought in the past 1,200 

years (Nuccitelli 2014).
5

 Human-induced climate change has also been linked to the 

increase in heat waves (Coumou and Rahmstorf 2012). There is evidence to conclude 

with a high probability that the 2010 Moscow heat waves that killed 11,000 people 

would not have occurred without human-induced climate warming. 

 

15. Climate change models indicate that the risk of floods occurring in England and 

Wales in autumn 2000 was higher by at least 20% due to 20th century anthropogenic 

GHG emissions (Pall et al. 2011). Case studies on three catchment regions in 

                                                
5
  Reconstructing drought conditions, the study finds that the 2014 California drought was the most severe 

drought in the past 1,200 years based on the Palmer Drought Severity Index, which estimates soil moisture.  

Figure 2: Carbon Dioxide Atmospheric Concentrations at Mauna Loa and 

Global Annual Temperature Anomalies, 1959–2015 

 

CO
2
 = carbon dioxide, ppm = parts per million. 

Note: The CO
2
 data measured in ppm on Mauna Loa, a volcano in Hawaii. Global annual 

mean surface air temperature change in degrees Celsius, base 1951–1980. 

Source: NASA GISS 2016. 
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southeastern Australia show that a doubling of CO
2
 levels would increase the frequency 

and magnitude of flood events, causing significant damage to buildings (Schreider, 

Smith, and Jakeman 2000). Records from Japan’s automated meteorological stations 

situated all over the country show that the number of precipitation events exceeding 

50 millimeters per hour and 80 millimeters per hour increased from the 1970s to 2013 

(Japan Meteorological Agency 2014). 

 

16. Studies predict that a doubling of atmospheric CO
2
 concentrations will triple 

the number of Category 5 storms (Anderson and Bausch 2006); and that for every 

1 degree Celsius rise in global temperature the frequency of events of the magnitude of 

Hurricane Katrina will increase by at least two times and possibly by as much as seven 

times (Grinsted, Moore, and Jevrejeva 2013). Climate models project a 3% to 5% 

increase in wind speed per degree Celsius in tropical sea surface temperatures (WMO 

2006). Some projections indicate that the intensity of tropical cyclones will increase by 

2% to 11% by 2100 (Knutson et al. 2010).
6 

 

 

17. The rise in sea surface temperatures is the "main determinant of the strength of 

storms, the total column water vapor and the convective available potential energy” 

(Trenberth 2005). Hurricane Sandy—the deadliest and most destructive hurricane of the 

2012 Atlantic hurricane season—was fueled by unusually warm ocean waters. Sandy 

produced storm surges almost 6 meters high, resulting in massive flooding that shut 

down the Port of New York and New Jersey for 5 days (Sturgis, Smythe, and Tucci 

2014).  

 

18. Typhoon Haiyan, which hit the Philippines in November 2013, formed when the 

sea surface temperature of the Pacific Warm Pool Region was at its highest (based on 

records since 1981). The sea surface temperature of the West Pacific Region was also 

elevated. The main trepidation, however, concerns the significant and positive 

increasing trend of 0.2 degrees Celsius per decade of the sea surface temperatures of 

both regions, given the correlation between sea surface temperatures and maximum 

winds of typhoons. 

 

B. Population Exposure and Vulnerability 

 

19. Exposure is the presence of people, livelihoods, ecosystems, environmental 

services, resources, infrastructure, and economic, social, and cultural assets in places 

and settings that could be adversely affected by natural hazards. People living along 

cyclone tracks and near the coasts of cyclone basins expect these yearly events. 

Similarly, people living in low-lying coastal areas and floodplains susceptible to 

monsoon flooding are used to heavy seasonal rains. But more people and industries are 

settling in these hazard-prone areas, putting themselves in harm’s way.  

 

20. Data from the reinsurance industry suggest that societal change—population 

and wealth—is sufficient to explain increasing disaster losses (Mohleji and Pielke 2014). 

An analysis of 22 disaster-loss studies suggests that if increases in population and 

capital were included in the disaster-loss equations, no loss trends can be attributed to 

                                                
6
  Tropical cyclones are areas of low atmospheric pressure over tropical and subtropical waters with a huge, 

circulating mass of wind with speeds of at least 119 kilometers per hour, and thunderstorms with spans of 

hundreds of kilometers. Aside from destructive winds, tropical cyclones can bring torrential rain, storm 

surges, and tornadoes that can ruin population centers, agricultural land, and metropolises. About 80 

tropical cyclones form every year from seven tropical cyclone basins: Atlantic, Northeast Pacific, Northwest 

Pacific, North Indian, Southwest Indian, Southeast Indian, and Southwest Pacific (NOAA AOML 2015).  
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human-induced climate change (Bouwer 2011). Some argue this may be especially true 

for rising urban centers with their increasing populations and infrastructure buildup 

(The Economist 2012). Others suggest there are no significant trends in disaster loss 

and damage (Neumayer and Barthel 2010); for example, as shown in hurricane losses 

and damages in the United States from 1900 to 2005.  

 

21. Communities and industries are built in flood-prone coastal areas because of 

the economic opportunities and services these areas provide, such as harbors and ports, 

livelihoods, and transportation. The infrastructure and market access of these areas 

offer comparative advantages which become more persuasive as economies become 

more global. An example of this is the number of megacities at risk of flooding; 

particularly Dhaka, Kolkata, Manila, Mumbai, and Shanghai, suggesting people are 

making an economic judgment to establish lives and businesses in these areas despite 

inherent risks.  

 

22. With these megacities becoming national and regional growth centers, 

agglomeration economies set in, further increasing investments, in-migration, and 

population density. A continuing rise in human and economic exposure in high-risk 

megacities cannot be discounted. By 2030, Shanghai’s current 23 million population is 

expected to rise to 31 million, and it is estimated that Dhaka will add another 10 

million to its 17 million population (UN DESA 2014). Understanding the economic 

decisions leading to this situation—more people living in harm’s way—is necessary if 

the exposure dimensions of risks are to be managed.  

 

23. Opposing forces affect people’s vulnerability. On the one hand, environmental 

degradation has rendered many locations increasingly vulnerable to floods and storms. 

On the other, progress has been made in disaster risk management. With more 

accurate forecasting, improved early warning systems, and better evacuation 

procedures in place, fatalities from disasters have fallen, despite their rising occurrence 

and damages.  

 

24. The success of Bangladesh’s cyclone warning system is a good example. After 

Cyclone Bhola, with wind speeds of 200 kilometers per hour, killed 300,000– 500,000 

people in 1970, Bangladesh invested $10 billion on cyclone readiness. With the country 

equipped with early warning systems, disaster-resilient shelters, and embankment 

protection, Cyclone Sidr in 2007, with wind speeds of 250 kilometers per hour, caused 

a much lower death toll of 10,000 (Thorlund and Potutan 2015). 

 

25. Vulnerability, like exposure, is also influenced by socioeconomic factors. The 

exposure–vulnerability links are quite strong and both can either act independently or 

simultaneously, often creating synergies or even creating a cycle of increasing or 

decreasing risk.  

 

26. Poorer economies are more vulnerable because a higher share of their 

populations lives in marginalized urban areas with poor infrastructure. Weak 

government capacity and lack of basic facilities also increase susceptibility to disasters. 

Flash floods commonly cause more fatalities in poorer communities than in more 

affluent areas. Poorer segments of the population with scant resources often end up in 

the higher risk peripheral areas and have less well-built homes. When disaster strikes, 

the poor are often left with even less resources. And when livelihoods are affected, 

losses are further amplified, leaving people even more vulnerable. 
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27. This was demonstrated in Typhoon Haiyan, which struck the eastern Visayas, 

one of the poorest regions of the Philippines. Here, four out of every 10 families are 

poor (PSA 2013). While damage from natural disasters in that year cost the country 

roughly 0.9% of its national product, Haiyan-related losses amounted to 17.4% of 

regional product in the eastern Visayas (NEDA 2013). With very little coping capacity, 

many Haiyan victims were still living in tents some 18 months after the disaster. 

 

28. Evidence also shows that higher educational attainment and literacy are 

associated with better disaster management and adaptive capacity (Toya and Skidmore 

2007). In the 2004 Asian tsunami, there were more female deaths than males which 

gives relevance to gender. Across age groups, children below 10 years and adults above 

40 are found to be the most vulnerable (Birkmann, Fernando, and Hettige 2007). 

 

C. The Climate–Disaster Link 

 

29. Several studies find that income, education, and institutions shape 

vulnerabilities and, subsequently, natural disaster impacts (Brooks, Adger, and Kelly 

2005, for example). Thomas, Albert, and Hepburn (2014) examined the importance of 

climate hazards as a determinant of disaster risk in Asia and the Pacific, along with 

population exposure and vulnerability.  

 

30. Unlike previous econometric analyses, these authors examined the frequency of 

intense natural disasters as the dependent variable because it is less likely to have a 

reporting bias than the alternatives (Thomas and Lopez 2015). Their results suggest 

that rising population exposure and greater climate variability play significant roles in 

explaining the frequency of climate disasters in Asia and the Pacific.  

 

31. Hydrometeorological disasters are strongly and positively associated with rising 

population exposure as well as precipitation anomalies, while climatological disasters 

are strongly associated with changing temperatures. Even after controlling for the 

effect of population exposure and vulnerability, climate variables have been a 

significant factor in the increase of frequency of intense hydrometeorological disasters 

in Asia and the Pacific since the 1970s, clearly linking climate change to disaster risks.   

 

32. The evidence is that it is very likely that the rising incidence of GHG emissions in 

the atmosphere is altering the climate system, and the findings suggest a connection 

between the frequency of intense natural disasters observed in the region and human-

induced climate change. Cyclone Nargis in Myanmar and Hurricane Sandy in the United 

States are clear indications that both developing and developed countries face climate-

related disaster risks. 

 

 

 

 

   

 



 

CHAPTER 3 

Comparisons with the 

Literature 

 

 

 

 

33. Most studies that have tried to link disasters to climate change used climate 

change models to simulate the likelihood of disasters in particular geographic areas (for 

example, Cornwall 2016). Others have analyzed particular disasters in specific regions 

(Stott et al. 2004; Hoerling et al. 2012). Analyzing particular disasters may have the 

advantage of gaining greater depth to understanding them, but the results using this 

approach are likely to be affected by selection biases (Heckman et al. 1998) because it 

is difficult to ascertain their general validity. Similarly, most studies on the effects of 

climate-related disasters on economic growth focus on particular events or on subsets 

of disasters in particular regions and times. This obviously raises the question of 

whether these studies are also affected by selection biases (Albala-Bertrand 1993; Otero 

and Marti 1995). 

 

34. The statistical–econometric analysis of this paper considers the spectrum of 

intense climate-related disasters worldwide during 1970–2013 for 184 countries or 

economies. A distinctive feature of the analysis is that it goes beyond measuring simple 

correlations between climate change indicators and disasters. Once these correlations 

are established, we implement cointegration tests to elucidate whether or not such 

correlations respond to meaningful relationships rather than spurious ones between 

the number of such disasters and CO
2
 accumulation in the atmosphere, and strive to 

uncover causal effects. We also examine how climate-related disasters and hence how 

atmospheric carbon accumulation have affected the potential for economic growth 

using panel country data for the full sample of disasters available for most countries in 

the world.  

 

35. Two studies related to this paper—Thomas, Albert, and Hepburn (2014) and 

Thomas and Lopez (2015)—also used multicountry statistical analyses. The former used 

a sample of 25 Asian countries, but only traced country-specific climatic conditions 

rather than global climatic trends. Moreover, while the authors found a significant 

statistical relationship between disasters and local climatic conditions, they did not 

check for potential biases in their results from the omission of certain variables 

affecting the likelihood of disasters and local climatic conditions.  

 

36. Thomas and Lopez’s study relied on cross-country, time-series statistical 

analyses to connect disasters and climate change using annual panel data for 153 

countries. The study showed a positive impact of global climate change indicators and 

local ones on hydrometeorological disasters. It also probed whether this connection 

was meaningful using cointegration analysis. However, since the sample covered only 

43-time observations, the time series analysis underlying cointegration was likely weak. 

Moreover, it did not consider the economic impact of disasters. Neither of these studies 

considered the effects of disasters on economic growth.   
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37. The background work for this study is a more solid basis for the conclusions 

than both of its related studies in two ways: (i) it uses the broadest country sample 

available of 184 economies across six continents for 43 years; (ii) it uses quarterly 

instead of annual data, lengthening the longitudinal component of the series to nearly 

180 observations and making the cointegration analysis more robust (Appendix 1). 

Most authors recognize that using a time series analysis with more than 100-time 

observations is adequate.  

 

38. More broadly, we integrate three major factors affecting the likelihood of the 

number and impact of natural disasters: global climatic factor (atmospheric CO
2
 

accumulation); local climate variables (local precipitation and temperature); and 

socioeconomic variables (per capita gross domestic product, population density). The 

use of socioeconomic variables is designed to capture vulnerability and exposure of 

populations to disasters. That we focus on intense disasters—defined as disasters that 

caused a certain minimum number of deaths or people affected—justifies the need to 

control for vulnerability and exposure factors. Simultaneously considering the effects of 

global climatic factors, local climate variables, and socioeconomic variables on disasters 

is a significant step because the focus is not just one type of factors, such as climate 

change variables, affecting natural disasters. In looking at various types of factors, we 

postulate that global climatic changes are likely to affect intense climate-related 

disasters in addition to local weather events, and that global climatic factors may 

increase the vulnerability of countries to local weather events. For example, as 

atmospheric CO
2
 accumulates, sea levels tend to increase, making coastal areas much 

more affected by storms. 

 

39. Finally, we provide first estimates of the impact of the observed increased 

number of hydrometeorological disasters on economic growth using all available data 

worldwide instead of focusing only on particular events or regions. Our estimates show 

that losses of human capital, but not material losses, caused by disasters are the most 

important factor explaining the estimated negative impact of disasters on economic 

growth. 

 



 

CHAPTER 4 

Data and Methods 

 

 

 

 

40. In examining the link between climate change and the increase of 

hydrometeorological incidents and their impact on economic growth, we use sample of 

184 economies (para. 37). Specifically, we use quarterly data on disasters—those that 

cause at least 100 deaths or directly affect at least 1,000 people. The model considers 

count data of disasters by country 𝑖 and quarter 𝑡 for 1970–2013 from the Emergency 

Events Database (2015). We use two alternative approaches to estimate the impact of 

global climate change on country disasters (Appendix 2). 

 

41. In Approach I, using the number of natural disasters per country and quarter as 

the dependent variable, we estimate the effect of global climate indicators as a 

separate variable directly in the regression analysis, controlling for country-specific 

effects. The global indicators used are global average temperature and atmospheric 

CO
2
 accumulation. A hypothesis is that global climate variables exert an independent 

effect on disasters over and above local country conditions. A problem with using the 

first approach is that the atmospheric CO
2
 level may correlate with omitted variables 

affecting natural disasters, thus biasing the estimates. 

 

42. In Approach II, we estimate two-way fixed effects. First, we control for both 

country-specific fixed effects and common-to-all-country global effects which vary over 

time (represented by the coefficients of the time dummy variables). In the second stage, 

we perform a cointegration analysis between atmospheric CO
2
 accumulation and the 

estimated global time effects obtained from the first stage to test whether these 

changing global time effects are meaningfully associated with hydrometeorological 

disasters. Using the cointegration estimates, we calculate the simulated or projected 

variation in disasters due to current observed rates of increase of CO
2
 concentration 

level with 2010–2013 as the baseline period. 

 

43. In examining the effect of disasters on economic growth, we use a model that 

controls for both fixed country and unobserved time-varying country-specific effects 

(Appendix 3).
 

We estimate a regression model in which growth of per capita gross 

domestic product (GDP) is the dependent variable and our main variable is an 

approximation of the disaster’s impact. We control for lags of per capita GDP growth 

as well as for fixed effect per country and time-varying country effects. Two different 

definitions of the variable “disaster” were used in this analysis. First, the direct 

proportion of the total country population that died due to hydrometeorological 

disasters (proportion of deaths); second, a generated dummy variable for the disasters 

that killed more than 100 people or affected at least 1,000 people 

(hydrometeorological disaster).  

 

44. The final part of the analysis is measuring the impact of CO
2
 accumulation in 

the atmosphere on economic growth (Appendix 3). First, the effect of CO
2
 

accumulation on the proportion of disaster-induced deaths is calculated using the 

estimated elasticity of disasters for CO
2
 accumulation and the estimated impact of 
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disasters on deaths as a proportion of total country population. This effect is combined 

with the elasticity of economic growth for disaster-induced deaths to measure the net 

elasticity of growth for the atmospheric CO
2
 accumulation. 

 



 

CHAPTER 5 

Quantitative Analysis 

Results 

 

 

 

 

45. In this paper, we present new evidence on the connections between climate 

change indicators and the increasing number of intense hydrometeorological disasters 

worldwide. We also explore the impact of disasters on economic growth using a 

sample of countries or economies which have sufficient data for the analysis. 

 

A. Impacts of Climate Indicators on Country Disasters 

 

46. The estimates explaining the occurrence of intense hydrometeorological 

disasters show that local- or country-level climate variables are highly significant and 

have expected signs (Appendix 4). Precipitation deviations exert a positive impact on 

the number of intense local hydrometeorological disasters, while temperature deviation 

is negative and significant. Atmospheric CO
2
 concentration lagged by 1 year shows a 

positive and highly significant effect relation showing an additional impact on 

hydrometeorological disasters. 

 

47. The quantitative results suggest the effect of global climate variables—

associated with the atmospheric accumulation of CO
2
—on hydrometeorological 

disasters is positive and significant. And that this exerts an independent effect over and 

above local climate variables while controlling for exposure and vulnerability of the 

population. However, it is possible that atmospheric accumulation of CO
2
 is correlated 

with other global variables unrelated to climate change which could also affect the 

likelihood of disasters in the same direction.  

 

48. We test through a cointegration analysis for the specific effect of the global 

climate variable. The common-to-all-countries global effects, whether climate-related or 

otherwise, represented by time, are highly significant and tend to become larger over 

the time period. In the second stage (cointegration), the estimated time effects and the 

concentration of atmospheric CO
2
 are seen to clearly go together. With this observation, 

it is highly implausible that hydrometeorological disasters cause the accumulation of 

carbon in the atmosphere. Hence, it must be the case that the causal direction is from 

atmospheric carbon accumulation to hydrometeorological disasters. 

 

49. We also calculate the projected variation in disaster due to current observed 

rates of increase of CO
2
 concentration using 2010–2013 as the baseline. The elasticity 

of hydrometeorological disaster for atmospheric CO
2
 level is 33.45.  

 

50. Assuming that CO
2
 levels continue increasing at the same rate as in 2010–2013 

(2 ppm), the number of intense hydrometeorological disasters per quarter per country 
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would increase by 0.035 events; that is, the number of disasters would double in 7 

years.  

 

51. So it appears that the increase in serious hydrometeorological disasters 

observed in the 1970–2013 analysis period can be attributed to the continuous 

worsening of CO
2
 accumulations. The effects are very serious as the model attributes 

about one additional annual major disaster to climate change, which represents about 

a 4% increase in the number of hydrometeorological disasters per year when we take 

the simulated impact of CO
2
 level.  

 

B. Economic Effects of Disasters 

 

52. An important issue is how intense disasters can affect economic growth. Since 

quarterly data for per capita GDP growth are not available for all countries we estimate 

the model using annual data (Appendix 5). This sample contains the same countries or 

economies used to determine the variables which affect intense hydrometeorological 

disasters. We use the same period of analysis as in the previous section, between 1970 

and 2013.  

 

53. Preliminary analyses show that among all the impacts of hydrometeorological 

disasters the most important economic consequence is associated with the mortality 

effects of disasters. Estimates of the effects of the number of intense 

hydrometeorological disasters on per capita GDP growth (without distinguishing 

human capital versus physical capital losses) have shown to be not significant. One 

interpretation is that the likely positive effects of disasters from rebuilding physical 

capital losses on economic activity when excess productive capacity exists may be offset 

by the negative effects of the losses of human capital. For this reason we focus on 

measuring the effects of death caused by disasters on the per capita GDP growth rate 

of the countries considered.  

 

54. The results suggest that disasters have negative and significant net effects on 

per capita GDP growth, as measured by the proportion of deaths caused by disasters. 

However, the relationship between economic growth and deaths may be affected by 

reverse causality, because it is plausible to assume that economic growth reduces the 

rate of population death. But even after controlling for deaths not due to disasters the 

coefficient of the variable proportion of deaths caused by disasters is still negative and 

highly significant. This supports our hypotheses that causality goes from disaster-

induced deaths to economic growth.  

 

55. An important implication of these results is that the effect of deaths due to 

disasters on economic growth is much larger than the effects of normal mortality. 

Perhaps disaster-induced deaths tend to be more economically disruptive because they 

are often more unexpected than other types of deaths. 

 

56. The background work also looked at the impact of the accumulation of CO
2
 in 

the atmosphere on economic growth. We find that a 1% increase in the level of CO
2
 

accumulated in the atmosphere causes a reduction in the rate of per capita GDP 

growth for the average or representative country by 0.13%. The results also suggest 

that if the rate of CO
2
 accumulation in the atmosphere continues at the current rate the 

average rate of economic growth for all countries may be expected to be reduced by 

1.5% in 20 years due to the increased climate-related disasters. 

  



 

CHAPTER 6 

Conclusions 

 

 

 

 

57. This paper analyzed the association between climate change variables and the 

incidence of intense hydrometeorological disasters within a framework that included 

global and local climate variables as well as socioeconomic factors that aggravate 

disasters. A key feature of the work is the focus on ascertaining the meaningfulness of 

the correlations between climate change indicators and disasters. The empirical analysis 

showed clear nonspurious connections between climate change indicators and the 

frequency of intense hydrometeorological disasters. Because a causal relationship going 

from disasters to carbon accumulation in the atmosphere is highly implausible, the 

finding of a meaningful positive correlation between atmospheric carbon accumulation 

and natural disasters must suggest a causal relationship going from CO
2
 accumulation 

in the atmosphere to the frequency of disasters. 

 

58. Moreover, we found that the quantitative effect of climate change indicators 

on the number of intense disasters is large. About one additional major annual disaster 

in the world can be attributed to the observed annual increases of CO
2
 accumulations. 

This implies that in a business-as-usual scenario in which global climatic indicators 

continue to deteriorate at recent rates, there would be a 4% annual increase in the 

number of intense hydrometeorological disasters worldwide attributed to climate 

change. 

 

59. Finally, there is evidence of a negative impact of intense hydrometeorological 

disasters on per capita GDP growth. We found a negative and significant impact of 

disaster-induced human capital losses on per capita GDP growth. We showed that a 1% 

increase of atmospheric carbon accumulation is associated with a 0.13% fall in the rate 

of growth of the average or representative country. Moreover, in the business-as-usual 

scenario, the average rate or per capita economic growth would be reduced by 1.5% in 

20 years just as a consequence of increased climate-related disasters. This estimate 

excludes other factors associated with atmospheric carbon accumulation which may 

impinge on economic growth. 

 

60. Our findings have implications for development interventions, which we now 

discuss. For 2016–2017, economists project growth of 3.3% for the global economy 

and 5.7% for Asia and the Pacific (IMF 2015, ADB 2015). Achieving rates of growth of 

this order will have great implications for attaining development goals, and for the 

effectiveness of projects that institutions such as ADB finance. Yet, these growth 

projections do not integrate climate actions nor the impacts of climate change. The 

crucial question is whether such growth rates can be sustained using existing patterns 

of growth without climate action and switching to a low-carbon economy in time.  

 

61. Domestic reforms are paramount to any country’s growth prospects, but cross-

border factors also matter in our highly globalized world economy. Perhaps surprisingly 

for some, the danger of climate change presents a greater threat than the current 
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global economic malaise. If sustained growth is to take place, the climate challenge 

must be met. Specifically, we need to strengthen disaster resilience, care more for the 

urban environment, and confront climate change as part of the growth paradigm. Even 

in the face of fluctuating oil prices, countries must commit to phasing out the use of 

fossil fuels and transitioning to a low-carbon economy.  

 

62. Climate-related disasters have been prominent in the headlines worldwide in 

recent years. East and Southeast Asia top the list of the regions affected. Floods and 

storms have cut significantly into annual growth rates in the People’s Republic of China, 

Indonesia, the Republic of Korea, Thailand, and Viet Nam—a trend that is set to worsen. 

The Philippines, often the first major landfall for typhoons arising in the western Pacific, 

is among the most vulnerable countries. 

 

63. Multiple factors explain the mounting number and impact of disasters: people’s 

exposure to hazards, particularly in low-lying and coastal cities; greater vulnerability 

from soil erosion and deforestation; and just plain overcrowding. In addition, climate 

hazards are becoming more menacing, which presents the most tangible reason to 

confront climate change as part of a development strategy. 

 

64. Even so, scientists are cautious about linking any particular disaster to climate 

change. In the same way, economists are reluctant to pin higher inflation in any given 

month on rising money supply. But, as with inflation, the broader associations are 

unmistakable. 

 

65. For some, the front-and-center needs of the poor heighten the dilemma of 

balancing growth with the environment. But this dilemma presents a false choice. 

Relying on a long-standing growth pattern that fuels economic momentum with 

environmental destruction will only aggravate climate change, and it is the poor who 

stands to lose the most from the ravages of global warming. 

 

66. The implication is that while growth must be fast, we need to do this 

differently. In essence, a new strategy is needed that values all three forms of capital—

physical, human, and natural. Sound growth policies have long been understood as 

those that expand investments in physical and human capital. But unless we also invest 

in natural capital, all bets are off. The 17 Sustainable Development Goals acknowledge 

this strong link between human well-being and environmental and ecosystem services.
7

  

 

67. First, disaster resilience needs to be built into national growth strategies. Japan 

invests some 5% of its national budget in disaster risk reduction and has avoided much 

worse economic damage and deaths from these events. Returns are also evident even 

with lesser investments. In the Philippines, the effects of flooding in Manila after heavy 

monsoon rains in August 2012 contrasted strongly with the devastation in the city 

from Tropical Storm Ketsana in 2009. The country has achieved payoffs from social 

media alerts, preemptive evacuation, and early warning systems. The Philippines’ 

experience also highlights the benefits of the hazard maps and upgraded rain- and 

water-level monitoring systems promoted by Project NOAH (Nationwide Operational 

Assessment of Hazards). 

 

68. Yet, dealing with natural disasters is still largely considered a cost to be borne 

after calamity strikes, rather than an investment to confront a growing threat. Disaster 

risk reduction accounts for just $0.40 of every $100 in total international development 

                                                
7
 http://www.un.org/sustainabledevelopment/sustainable-development-goals/ 
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aid. For governments, one recommended level of spending is 1% to 2% of national 

budgets. But more important than the exact percentage is promoting the effective use 

of this spending. 

 

69. Second, policymakers need to raise the priority of urban management as a 

strategic thrust. Three cities considered most vulnerable to natural hazards are in Asia—

Dhaka, Manila, and Jakarta—and all of them are overcrowded and in geographically 

fragile settings.  

 

70. Massive agglomeration notwithstanding, fewer than 50% of Asians live in cities, 

compared with 80% in Latin America. Because further urbanization seems inevitable, it 

is hard to overstate the priority of careful physical planning, environmental care, and 

judicious urban management.  

 

71. Third, climate action needs to be a central component of national plans. 

Economic growth will not be automatic if climate change is not dealt with. So, 

adapting to the changing climate through better management of the location decisions 

of people and businesses, and protecting the natural environment is becoming more 

urgent.  

 

72. The poor are hit hardest by the effects of climate change. Climate adaptation, 

including building resilient communities, climate mitigation, and a switch to a low-

carbon path, are essential parts of a future poverty reduction strategy. No single 

country can make a difference in this respect. However, Asia and the Pacific, the region 

most at risk, must be a powerful voice by switching to a low-carbon path and in calling 

on other countries to do the same. 

 

73. Disaster risk management needs to be understood as an investment that goes 

beyond relief and reconstruction to a dual approach of prevention and recovery. 

Economists can facilitate this understanding by building into their calculus the role of 

natural hazards and climate impacts in shaping lives and livelihoods. Factoring this into 

influential growth scenarios could make a big difference to policy making. And climate 

mitigation and adaptation need to be seen as a vital and high-return part of this 

approach. 
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APPENDIX 1: List of Economies Considered in the Analysis  

 
 

1 Afghanistan 

2 Albania 

3 Algeria 

4 Angola 

5 Antigua and Barbuda 

6 Argentina 

7 Armenia 

8 Australia 

9 Austria 

10 Azerbaijan 

11 Bahamas 

12 Bangladesh 

13 Barbados 

14 Belarus 

15 Belguim 

16 Belize 

17 Benin 

18 Bermuda 

19 Bhutan 

20 Bolivia 

21 Bosnia and Herzegovina 

22 Botswana 

23 Brazil 

24 Bulgaria 

25 Burkin Faso 

26 Cabo Verde 

27 Cambodia 

28 Cameroon 

29 Canada 

30 Cayman Islands 

31 Central African Republic 

32 Chad 

33 Chile 

34 People’s Republic of China 

35 Colombia 

36 Comoros 

37 Democratic Republic of Congo 

38 Republic of Congo 

39 Costa Rica 

40 Cote d’Ivoire 

41 Croatia 

42 Cuba 

43 Cyprus 

44 Czech Republic 

45 Denmark 

46 Djibouti 

47 Dominica 

48 Dominican Republic 

49 Ecuador 

50 Arab Republic of Egypt 

51 El Salvador 

52 Eritrea 

53 Estonia 

54 Ethiopia 

55 Fiji 

56 Finland 

57 France 

58 Gabon 

59 Gambia 

60 Georgia 

61 Germany 

62 Ghana 

63 Greece 

64 Grenada 

65 Guatemala 

66 Guinea 

67 Guinea-Bissau 

68 Guyana 

69 Haiti 

70 Honduras 

71 Hong Kong, China 

72 Hungary 

73 Iceland 

74 India 

75 Indonesia 

76 Islamic Republic of Iran 

77 Iraq 

78 Ireland 

79 Israel 

80 Italy 

81 Jamaica 

82 Japan 

83 Jordan 

84 Kazakhstan 

85 Kenya 

86 Kiribati 

87 Republic of Korea 

88 Kuwait 

89 Kyrgyz Republic 

90 Lao People’s Democratic Republic 

91 Latvia 

92 Lebanon 

93 Lesotho 

94 Liberia 

95 Libya 

96 Lithuania 

97 Luxembourg 

98 Macao, China 

99 Macedonia 

100 Madagascar 
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101 Malawi 

102 Malaysia 

103 Maldives 

104 Mali 

105 Marshall Islands 

106 Mauritiana 

107 Mauritius 

108 Mexico 

109 Federated States of Micronesia 

110 Moldova 

111 Mongolia 

112 Montenegro 

113 Morocco 

114 Mozambique 

115 Myanmar 

116 Namibia 

117 Nepal 

118 Netherlands 

119 New Caledonia 

120 New Zealand 

121 Nicaragua 

122 Niger 

123 Nigeria 

124 Norway 

125 Oman 

126 Pakistan 

127 Palau 

128 Panama 

129 Papua New Guinea 

130 Paraguay 

131 Peru 

132 Philippines 

133 Poland 

134 Portugal 

135 Puerto Rico 

136 Romania 

137 Russian Federation 

138 Samoa 

139 Saudi Arabia 

140 Senegal 

141 Serbia 

142 Seychelles 

143 Sierra Leone 

144 Slovak Republic 

145 Slovenia 

146 Solomon Islands 

147 Somalia 

148 South Africa 

149 South Sudan 

150 Spain 

151 Sri Lanka 

152 St. Kitts and Nevis 

153 St. Lucia 

154 St. Vincent and the Grenadines 

155 Sudan 

156 Suriname 

157 Swaziland 

158 Sweden 

159 Switzerland 

160 Syrian Arab Republic 

161 Tajikistan 

162 Tanzania 

163 Thailand 

164 Timor-Leste 

165 Togo  

166 Tonga 

167 Trinidad and Tobago 

168 Tunisia 

169 Turkey 

170 Turkmenistan 

171 Tuvalu 

172 Uganda 

173 Ukraine 

174 United Kingdom 

175 United States 

176 Uruguay 

177 Uzbekistan 

178 Vanuatu 

179 Venezuela 

180 Viet Nam 

181 Virgin Islands 

182 Republic of Yemen 

183 Zambia 

184 Zimbabwe 

 



 

APPENDIX 2. Methodology in Estimating the Impacts of 

Climate Indicators on Country Disasters 

 

1. The dependent variable is the number of intense natural disasters, consisting of 

nonnegative count values.  So, count regression models such as the Poisson or negative 

binomial need to be used. We use the negative binomial model in equation (1), which 

unlike the Poisson model, allows for overdispersion between the mean and the variance 

of the distribution (Johnson, Kotz, and Kemp 1992; Lambert 1992).  

 

2. We estimate equation (1) using quarterly data for 184 countries during 1970–

2013, a total of 25,876 observations. Table A2.1 shows the descriptive statistics of the 

data used.  

 

Table A2.1: Descriptive Statistics of the Data Used, 1970–2013 

Variables Obs. Mean 

Std. 

Dev. Minimum Maximum 

Dependent Variable (frequency of 

intense hydrometeorological disasters) 25,876 0.154 0.569 0.000 15.000 

Ln (population density) 
25,876 3.808 1.477 0.103 9.980 

Ln GDP per capita (constant 2005 US$) 
25,876 10.650 2.360 3.988 17.439 

Square of Ln GDP per capita 
25,876 118.997 53.083 15.904 304.114 

Average precipitation deviation 
25,876 39.045 37.327 0.073 646.941 

Average temperature deviation 
25,876 0.743 0.496 0.009 6.539 

Population (million) 
25,876 34.588 124.261 0.010 1,357.380 

CO
2
 level 

25,876 360.400 20.526 324.090 398.897 

CO
2
 = carbon dioxide, GDP = gross domestic product, Ln = log, Obs. = observations, Std. Dev. = standard 

deviation. 

Source: Asian Development Bank Independent Evaluation Department. 

 

3. In equation (1) the dependent variable is the annual frequency of intense 

hydrometeorological disasters,(𝑯𝒊𝒕). The independent variables are 𝑾𝒊𝒕 , the average 

local precipitation deviation in the country, measured as departures from the average 

for its 30-year base of 1961–1990 (Schneider et al. 2015); 𝒁𝒊𝒕 , the average local 

temperature deviation in the country; 𝑽𝒊𝒕, per capita gross domestic product as a proxy 

for vulnerability to disasters; 𝑼𝒊𝒕 , population per country as an indicator of exposure to 

disasters; and 𝑮𝒕 , global effects varying at each point of time.
1

 We estimate the 

parameters 𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4, and 𝛼5 of the following regression equation:  

 

Ε[𝐻𝑖𝑡|𝑈𝑖𝑡 , 𝑉𝑖𝑡 , 𝑊𝑖𝑡 , 𝑍𝑖𝑡 , 𝐺𝑡 , 𝑣𝑖𝑡] = 𝑒𝑥𝑝(𝛼0+𝛼1𝑈𝑖𝑡+𝛼2𝑉𝑖𝑡+𝛼3𝑊𝑖𝑡+𝛼4𝑍𝑖𝑡+𝛼5𝐺𝑡)𝑒𝑥𝑝(𝑣𝑖𝑡),         (1) 

 

where 𝒗𝒊𝒕 is the stochastic error term. The count of intense disasters—the dependent 

variable—is characterized by excess zeros. In particular, a high proportion of the 

quarterly country observations for hydrometeorological disasters have zero counts. 

Failing to account for the prevalence of zeros in the dependent variable would likely 

result in inconsistent estimators. For this reason, we use the zero-inflated count model 

(Johnson, Kotz, and Kemp 1992; Lambert 1992). This model allows elucidating whether 

the zero-observed dependent variable may either mean a zero probability of having a 

disaster or a positive probability but no disaster because of random factors (Vuong 

                                                
1
 Considering only intense disasters (those causing at least 100 deaths or affecting at least 1,000 people) 

implies that vulnerability and exposure variables need to be considered as explanatory variables. 
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1989). We estimate the determinants of hydrometeorological disasters using a zero-

inflated negative binomial regression model. Vuong tests revealed significant positive 

test statistics favoring the zero-inflated models over the NB count regression models. 

Box 1 presents the derivation of this estimator. 

 

 

 

4. Two problems that affect common regression analysis particularly concern us. 

The first is that the series may change together over time on a similar upward trend 

basis which, as is well-known, implies that any regression analysis between them would 

yield a positive and significant coefficient without necessarily meaning that they are 

related (Granger and Newbold 1974). This is the case when the series are not 

covariance stationary; that is, when the series do not have finite means and 

autocovariance change over time. The second problem is the relationship between the 

series may be affected by other variables (often impossible to observe) that are not 

controlled for in the regression analysis. This is the so-called omitted variable biases.  

 

5. Cointegration allows us to deal with these two problems by enabling us to test 

whether particular transformations of the series yield covariance stationary processes 

(and hence can be used to obtain meaningful econometric estimates of the key 

parameters), and whether the existence of omitted variables is still consistent with 

obtaining nonspurious correlations over the long run. 

 

𝐻𝑖𝑡~ {
0              𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜌𝑖  

𝑔(𝐻𝑖𝑡 |𝑅𝑖𝑡 ) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜌𝑖
. 

𝑃(𝐻𝑖𝑡 = ℎ𝑖𝑡|𝑅𝑖𝑡, 𝐼𝑖𝑡) = {
𝜌(𝜆′𝐼𝑖𝑡) + {1 − 𝜌(𝜆′𝐼𝑖𝑡)}𝑔(0|𝑅𝑖𝑡)      𝑖𝑓 𝑦𝑖𝑡 = 0

{1 − 𝜌(𝜆′𝐼𝑖𝑡)}𝑔(ℎ𝑖𝑡|𝑅𝑖𝑡)                       𝑖𝑓 𝑦𝑖𝑡 > 0
 . 

Box 1: Derivation of Zero-Inflated Estimator 

  

For each country 𝒊 and year 𝒕, there are two possible data generation processes for 𝐻𝑖𝑡 — the 

selection of which is a result of a Bernoulli trial. The first process, which generates only zero 

counts, is chosen with probability 𝜌𝑖 . The second process 𝑔(𝐻𝑖𝑡 |𝑅𝑖𝑡 ) with probability 1 − 𝜌𝑖  

generates positive counts from a negative binomial distribution; 𝑅𝑖𝑡is a vector of explanatory 

variables (in our case 𝑈𝑖𝑡 , 𝑉𝑖𝑡 , 𝑊𝑖𝑡, 𝐺𝑡). In general, we have 

 

Then the probability of {𝐻𝑖𝑡 = ℎ𝑖𝑡|𝑅𝑖𝑡} where ℎ𝑖𝑡 is a particular value of the variable 𝐻𝑖𝑡can be 

expressed as (Johnson, Kotz, and Kemp 1992; Lambert 1992): 

 

 

The probability 𝜌𝑖  depends on the characteristics (a subset of the explanatory variables) of 

country 𝑖 and year 𝑡. Hence, 𝜌𝑖𝑡 is written as a function of 𝜆′𝐼𝑖𝑡 where 𝐼𝑖𝑡 is the vector of zero-

inflated covariates and 𝜆 is the vector of zero-inflated coefficients to be estimated.  

 

A probit function using the same explanatory variables as described in equation (1) is specified 

as the zero-inflated link function—relating the product  𝜆′𝐼𝑖𝑡 (which is scalar) to the probability 

𝜌𝑖𝑡. We thus estimate hydrometeorological disasters using a negative binomial zero-inflated 

regression model. Vuong tests revealed significant positive test statistics which favor the zero-

inflated models over the standard negative binomial count regression models. This means that 

the zero-inflated method is necessary given the preponderance of zeroes of the dependent 

variable.  

 

This model allows elucidating whether the zero-observed dependent variable either 

corresponds to countries which in a particular year had a zero probability of having a disaster, 

or countries that had a positive probability of a disaster but, due to random conditions in that 

year, experienced no disaster and, consequently, also had a zero dependent variable (Vuong 

1989). 
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6. To implement the analysis of cointegration we estimated coefficients of the 

quarterly time dummies obtained from the two-way fixed effects model (first stage of 

the Approach II) are subjected to a cointegration analysis (Engle and Granger 1991) 

with the quarterly data on atmospheric carbon dioxide (CO
2
). We can think of 

cointegration as describing a particular kind of long-run equilibrium relationship. In 

particular, we seek to understand whether the estimated coefficients of the time 

dummies and the global climate variable are positively correlated in a nonspurious way. 

We use cointegration analysis not as a tool to determine causality but merely as an 

instrument to confirm the existence of a meaningful or nonspurious correlation 

between the carbon accumulation in the atmosphere and hydrometeorological 

disasters. We thus first regress the coefficients of the time dummies (𝑦𝑡) on the series 

of atmospheric CO
2
 (𝑥𝑡),  

 

𝑦𝑡 = 𝛽0 + 𝛽1 ∙ 𝑥𝑡 + 𝜇𝑡,                                            (2) 

 

where 𝛽0 is a fixed coefficient, 𝛽̂1 is the predicted value of the cointegrating coefficient 

obtained from the ordinary least squares estimation, and 𝜇𝑡 is the predicted error series. 

The ordinary least squares estimation of equation (2) gives us an unbiased estimation 

of 𝛽̂1 . However, its standard error estimate is inconsistent and is not normally 

distributed. Hence, the usual inferential procedures do not apply. 

 

7. For the significance of 𝛽1—the cointegrating coefficient—it has been shown 

that both the dependent and independent variables cointegrate if and only if there is 

an error correction model (ECM) for either 𝑦𝑡 and 𝑥𝑡 or both (Engle and Granger 1991; 

Johansen 1988,1995). The ECM involves a particular transformation of equation (2) to 

allow for a consistent estimation of the cointegrating coefficient. Box 2 shows the 

derivation of the ECM. 

 

8. The ECM requires the specification of a time process for the stochastic error, 𝜇𝑡. 

If 𝜇𝑡  is a stationary of mean zero variable, there exists a stationary autoregressive 

moving average model for 𝜇𝑡 . We assume an autoregressive model AR(2) for 𝜇𝑡  as 

follows: 

 

𝜇𝑡 = 𝜃1𝜇𝑡−1 + 𝜃2𝜇𝑡−2 + 𝜀𝑡.                                                  (3) 

  

In Box 2, we show that equations (2) and (3) imply an autoregressive distributed lag 

model,  

 

𝑦𝑡 = 𝛿 + 𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2 + 𝜑0𝑥𝑡 + 𝜑1𝑥𝑡−1 + 𝜑2𝑥𝑡−2 + 𝜀𝑡.            (4) 

 

It can be transformed into the following ECM model (Box 2): 

 

∆𝑦𝑡 = 𝛿 + 𝜆1∆𝑦𝑡−1 + 𝑘0∆𝑥𝑡 + 𝑘1∆𝑥𝑡−1 + 𝛾1𝑦𝑡−1 + 𝛾2𝑥𝑡−1 + 𝜀𝑡,      (5) 

 

where 𝛿, 𝑘0, 𝑘1, 𝜆1, 𝛾1,and 𝛾2  are parameters. From equation (5) the estimator of the 

cointegrating coefficient is given by the long-run solution 

 

𝛽̂1 = −
𝛾̂2

𝛾̂1
 .                                                       (6) 
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Box 2: Derivation of Error Correction Model 

 

The model with the time dummies (𝑦𝑡) and the series of atmospheric carbon dioxide (𝑥𝑡) can be 

expressed as  

𝑦𝑡 = 𝛽0 + 𝛽1 ∙ 𝑥𝑡 + 𝜇𝑡,                                        (1) 

where 𝛽0 and 𝛽1  are the parameters and 𝜇𝑡 is the stochastic error term. 

 

Assume for simplicity that it is an autoregressive model AR(1) (we also tried with AR(2) but, the 

additional parameters were not significant): 

 

 𝜇𝑡 = 𝜃1𝜇𝑡−1 + 𝜃2𝜇𝑡−2 + 𝜀𝑡.                                    (2) 

 

In particular, we can estimate equation (2) using ordinary least squares and the unrestricted 

autoregressive distributed lag (ARDL) model, where the lag lengths are set to eliminate residual 

autocorrelation, an ARDL(2,2) model. From equations (1) and (2) we have  

 

𝑦𝑡 − 𝛽0 − 𝛽1 ∙ 𝑥𝑡 = 𝜇𝑡, 

𝑦𝑡−1 − 𝛽0 − 𝛽1 ∙ 𝑥𝑡−1 = 𝜇𝑡−1, and 

𝑦𝑡−2 − 𝛽0 − 𝛽1 ∙ 𝑥𝑡−2 = 𝜇𝑡−2. 

 

Using all expressions and equation (2) we have 

 

𝑦𝑡 − 𝛽0 − 𝛽1 ∙ 𝑥𝑡 = 𝜃1(𝑦𝑡−1 − 𝛽0 − 𝛽1 ∙ 𝑥𝑡−1) + 𝜃2(𝑦𝑡−2 − 𝛽0 − 𝛽1 ∙ 𝑥𝑡−2) + 𝜀𝑡 , 

and rearranging terms 

 

𝑦𝑡 = 𝛿 + 𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2 + 𝜑0𝑥𝑡 + 𝜑1𝑥𝑡−1 + 𝜑2𝑥𝑡−2 + 𝜀𝑡,          (3) 

 

where 𝛿 = (𝛽0 − 𝜃1𝛽1 − 𝜃2𝛽1), 𝜑0 = 𝛽1, 𝜑1 = −𝜃1𝛽1 and 𝜑2 = −𝜃2𝛽1 . Equation (3) is an 

unrestricted autoregressive distributed lag model, ARDL (2,2). 

 

To obtain the error correction model form we used the next two equalities (developing right 

sides of both equalities directly reached the left sides): 

𝑦𝑡−𝜃1𝑦𝑡−1 − 𝜃2𝑦𝑡−2 = ∆𝑦𝑡+𝜃2𝑦𝑡−1 − (𝜃1 + 𝜃2 − 1)𝑦𝑡−1 and 

𝜑0𝑥𝑡 + 𝜑1𝑥𝑡−1 + 𝜑2𝑥𝑡−2 = 𝜑0∆𝑥𝑡 − 𝜑2∆𝑥𝑡−1 + (𝜑0 + 𝜑1 + 𝜑2)𝑥𝑡−1, 

 

where ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1,  ∆𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1 . Using both equalities in equation (3) and rearranging 

terms: 

∆𝑦𝑡 = 𝛿 − 𝜃2∆𝑦𝑡−1 + 𝜑0∆𝑥𝑡 − 𝜑1∆𝑥𝑡−1 + (𝜃1 + 𝜃2 − 1)𝑦𝑡−1 + (𝜑0 + 𝜑1 + 𝜑2)𝑥𝑡−1 + 𝜀𝑡 

 

∆𝑦𝑡 = 𝛿 + 𝜆1∆𝑦𝑡−1 + 𝑘0∆𝑥𝑡 + 𝑘1∆𝑥𝑡−1 + 𝛾1𝑦𝑡−1 + 𝛾2𝑥𝑡−1 + 𝜀𝑡,                         (4) 

where 𝜆1 = −𝜃2, 𝑘0 = 𝜑0, 𝑘1 = −𝜑1, 𝛾1 = 𝜃1 + 𝜃2 − 1 and  𝛾2 = 𝜑0 + 𝜑1 + 𝜑2 . We estimate 

equation (4) using the ordinary least squares method. From equation (4) the estimator of the 

cointegrated coefficient is given by the long-run solution 

 

𝛽̂1
∗

= −
𝛾̂2

𝛾̂1
 .                                                           (5) 

 

 

9. Thus, using the estimated coefficients 𝛾1 and 𝛾2  and their respective standard 

errors we can obtain a consistent measure for 𝛽̂1
∗
and its correct standard error to 

analyze its significance. Another test to verify cointegration is the maximum-likelihood 

method developed by Johansen (1988, 1995) of vector error correction modeling 

(Box 3). 
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10. For the problem of omitted variables, it has been shown that if cointegration 

tests are passed it means that—regardless of the possible existence of omitted 

variables—the estimated cointegrating coefficient from equation (6) is unbiased and 

consistent (Pashourtidou 2003). Although the adjustment coefficients (short-run 

estimates) may be biased, our focus is on the long-run correlation between the 

variables of interest. In fact, what we seek to discover is precisely how a continuous 

accumulation of CO
2
 in the atmosphere (a long-run effect) may be associated with the 

increase of natural disasters over the long run. 

 

Box 3: Vector Error Correction Model and Johansen Test 

 

In a bivariate model with 𝑦𝑡 and 𝑥𝑡 variables, there exists a  𝛽0,𝛽1  such that  𝑦𝑡 − 𝛽0 − 𝑥𝑡𝛽1 =

𝜇𝑡  is 𝐼(0) even though 𝑥𝑡 and 𝑦𝑡 may be nonstationary series. This means the two variables are 

cointegrated or have a stationary long-run relationship even though individually they are 

nonstationary series.  

 

A vector autoregression model with 𝑙 lags can be represented as 

 

𝑧𝑡 = 𝜌1𝑧𝑡−1 + 𝜌1𝑧𝑡−1 + ⋯ + 𝜌1𝑧𝑡−1 + 𝜑𝜏𝑡 + 𝜀𝑡 ,                    (1) 

 

where 𝑧𝑡 = (𝑦𝑡
𝑥𝑡

)  is an 2𝑥1  vector of  𝐼(1)  variables, 𝜏𝑡 is a vector of deterministic variable and 

𝜀𝑡  is a 2𝑥1  vector of identically and normally distributed errors with mean zero and 

nondiagonal covariance matrix Σ. Given that the variables are cointegrated, equation (1) can be 

represented by the following  equilibrium correction model (equation 2):  

 

Δ𝑧𝑡 = 𝜂𝜔′𝑧𝑡−1 + ∑ Γ𝑖
𝑙−1
𝑖=1 Δ𝑧𝑡−1 + 𝛿 ∙ 𝑡 + 𝑣 + 𝜀𝑡.                     (2) 

 

Vectors 𝜂  and 𝜔 are the key coefficients. 𝜔  is an 2𝑥𝑟  matrix of cointegrating vectors that 

explains the long-run relationship of the variables. 𝜂 is also an 2𝑥𝑟 matrix that explains long-run 

disequilibrium of the variables. 𝑣 and 𝑡  are the deterministic trend component. It is important 

to note that for cointegration to exist, matrices 𝜂  and 𝜔 should have reduced rank  𝑟, where 

𝑟 < 2.  The identification of the cointegrating vector uses maximum likelihood method 

developed by Johansen (1988, 1995).  

 

 



 

APPENDIX 3: Methodology in Measuring the Economic Effects 

of Disasters 

 

 

1. Finding an effect of disasters on economic growth has been difficult. The World 

Bank and United Nations (2010) did a literature review of natural disasters and their 

growth effects, but did not find a consistent conclusion. The main reason for this is the 

potential effect of omitted variables that may affect both gross domestic product (GDP) 

growth and natural disasters. No matter how many control variables are used, one is 

never sure that there might not be other relevant unobserved omitted variables.  

 

2. Several studies, however, do find a negative effect on GDP growth (Otero and 

Marti 1995; Benson 1997; Benson and Clay 1998; Murlidharan and Sha 2001; 

Hochrainer 2009; Cuaresma 2009). They show the impact depends on the size of the 

disaster, the size of the economy, and economic conditions. However, Albala-Bertrand 

(1993) found no significant long-term effect in developed countries, and in developing 

countries the author reports a negative effect that tends to disappear after 2 years. 

Caselli and Malhotra (2004) argue that disasters do not reduce GDP growth.   

 

3. Loayza et al. (2009) estimate the medium-term effects on economic growth of 

different natural hazards using a model with three main sectors (agriculture, industry, 

services) and the whole economy. Their main conclusion is that economic growth is 

generally lower after a disaster; however, the effect depends on the type of natural 

hazard and it is not always statistically significant. Fomby, Ikeda, and Loayza (2009) 

find that moderate and severe disasters affect growth more in poor countries than in 

rich ones.  

 

4. Disasters have differential impacts on various assets. They affect human capital 

mainly through deaths and injuries, and nonhuman capital from losses of infrastructure, 

livestock, and productive capital. We hypothesize that these two types of assets 

affected by disasters entail fundamentally different effects on economic growth. While 

the losses of human capital hurt economic growth in a fundamental way, the losses of 

nonhuman capital can be recovered quite rapidly. 

 

5. The process of rebuilding physical capital often entails greater demand for 

domestic industries. If there is excess industrial capacity, this increased demand may 

allow for a greater use of the production capacity.
1

 Thus, paradoxically rebuilding 

physical capital losses may induce greater industrial production and a faster rate of 

economic growth. Regressing growth on disasters without separating their effects on 

these two types of assets would likely give weak and ambiguous correlations. However, 

if we focus on the human capital consequences, we are likely to obtain stronger links. 

We show this by first using the standard approach of estimating the effects of disasters 

without separating the effects, finding no statistically significant effects of disasters on 

growth. But focusing on the human losses caused by disasters gives negative and 

statistically significant effects.  

 

                                                
1
 In most cases, natural disasters affect only part of a country´s territory, rarely all of it. This means that 

industries located in unaffected areas can expand production quite rapidly to satisfy the demands for 

material goods from affected areas. Moreover, if the marginal costs of production do not increase too 

rapidly with production levels (as may be expected when there is unused capacity), one can expect that the 

increased supply of goods will result in only small price increases. 
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6. An additional contribution to the literature of our analysis is the use of a new 

model that controls for both fixed country and unobserved time-varying country-

specific effects (TVCE), as developed and first applied by López and Palacios (2014). The 

idea is that many potentially omitted factors affecting the impact of disasters may be 

captured by TVCE. That is, while previous studies control for country fixed effects and 

common-to-all countries time effects, they fail to control for TVCE. We hope that using 

TVCE considerably mitigates the potential biases due to omitted variables that may 

affect each country over time in a changing manner. 

 

7. We estimate a model in which per capita GDP growth is the dependent variable 

and our main variable is an approximation of a disaster’s impact. We control for lags of 

GDP growth as well as for fixed effect per country and time-varying country effects. The 

TVCE method is a parsimonious approach aimed at controlling for country-specific 

variables that are either unobserved or difficult to measure; these may change over 

time and are specific to each country. The TVCE approach is a generalization of both 

the standard fixed-effects model and the country-specific time trends approach. 

 

8. Taking into consideration the length of our data base, we control for 5-year 

country-specific variable effects. In other words, we have a different dummy variable 

for each country for every 5-year period. The following equation shows the estimating 

equation. In this case 𝛼𝑖,𝑗 represents how previous per capita GDP growth affects the 

current level, while 𝛽𝑖,𝑡∗  is the parameter which estimates the TVCE. 𝜃𝑖,𝑡−𝑗  is our 

parameter of interest relating disasters to per capita GDP growth. Moreover, 𝜀𝑖 is the 

fixed country effect and  𝜇𝑖,𝑡 is the error of the estimation. 

 

𝐺𝑑𝑝𝐺𝑟𝑜𝑤𝑡ℎ𝑖,𝑡 = ∑ 𝛼𝑖,𝑗 ∙

𝑛

𝑗=1

𝐺𝑑𝑝𝐺𝑟𝑜𝑤𝑡ℎ𝑖,𝑡−𝑗 + ∑ 𝜃𝑖,𝑡−𝑗 ∙

𝑚

𝑗=0

𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟𝑖,𝑡−𝑗

+ ∑ 𝛽𝑖,𝑡∗ ∙ 𝑣𝑖,𝑡∗ + 𝜀𝑖 + 𝜇𝑖,𝑡

𝑇−5

𝑡∗={𝑡:𝑡+5}

. 

 

9. We use two different definitions of the variable “disaster.” First, we use directly 

the proportion of the total country population that died due to hydrometeorological 

disasters. This variable is named “proportion of deaths.” Second, we generate a dummy 

variable for the disasters that killed more than 100 people or affected at least 1,000 

people. We called this variable “hydrometeorological disaster.” 

  



 

APPENDIX 4: Impacts of Climate Indicators on Country 

Disasters 

 

 

1. The first column in Table A4.1 shows the estimates using one-way fixed effects 

(Approach I), using carbon dioxide (CO
2
) accumulation as an indicator of global climate 

effect. The second column shows the estimates of the two-way fixed effects (first stage 

of Approach II) using quarterly time dummies in addition to country effects (Table 

A4.2). The Voung test rejects the hypothesis that negative binomial zero-inflated 

estimators are equal to the negative binomial estimators at 1% level of significance. 

Therefore, there is evidence that the zero-inflated negative binomial model is needed to 

avoid inconsistent estimators. 

 

Table A4.1: Determinants of Intense Hydrometeorological Disasters 

 NBZI 

Item 

One-way fixed 

effects 

(1) 

Two-way fixed 

effects 

(2) 

Ln population density 0.151*** 0.112*** 

 [0.0361] [0.0330] 

Ln GDP pc 0.148** 0.183*** 

 [0.0751] [0.0700] 

Squared Ln GDP pc (0.00678)** (0.00850)*** 

 [0.00314] [0.00290] 

Precipitation deviation 0.000497 0.0050*** 

 [0.000587] [0.001160] 

Temperature deviation (0.6820)*** (0.4941)*** 

 [0.0817] [0.0798] 

Population (million) 0.00155*** 0.00150*** 

 [0.0000953] [0.0000800] 

CO
2
 atmospheric level (1-year lag) 0.0175***  

 [0.00109]  

Observations 25,876                       25,876 

Akaike information criterion  17,833.27                    17,603.71 

Bayesian information criterion  18,135.23                   19,325.70 

Likelihood ratio test 56.85*** 77.26*** 

Vuong test 15.69*** 14.98*** 

( ) = negative, CO
2
 = carbon dioxide, GDP = gross domestic product, Ln = log, NBZI = negative 

binomial zero-inflated, pc = per capita. 

Note: Standard errors in brackets. * significant at 10%, ** significant at 5%, *** significant at 1%.  

Source: Asian Development Bank Independent Evaluation Department..  

 

2. Precipitation deviation, the key feature of floods and storms, has a positive and 

significant association with the incidence of local hydrometeorological disasters. Local 

temperature deviation is negative and significant. Atmospheric CO
2
 concentration 

lagged by 1 year shows a positive and highly significant relation showing an additional 

impact on hydrometeorological disasters. Thus, the global effects associated with the 

atmospheric accumulation of CO
2
 appear to exert an independent effect over and 

above local climatic events. This makes sense as global climatic factors may increase the 

vulnerability of countries to local weather events. For example, as atmospheric CO
2
 

accumulates, sea levels tend to increase, making coastal areas much more affected by 

storms.      



28 Development Effectiveness, Natural Disasters, and Climate Change 
 

 

3. It is possible that global climate variables used in Approach I (first column of 

Table A4.1) are correlated with other global variables unrelated to climate change 

impacting the likelihood of disasters in the same direction. This would then imply that 

the coefficient the CO
2
 variable may be inconsistent. That is why we use Approach II, 

which in its second stage uses cointegration to test for specific effects of the global 

climate variable.  

 

4. The second column of Table A4.1 reports the first stage of Approach II. The 

common-to-all countries time effect represented by the coefficients of the quarterly 

time dummy variables captures any global effects. The time dummy coefficients (Table 

A4.2) are highly significant and become larger over the time period. In the second 

stage, we implement cointegration analysis between the estimated time dummy 

coefficients and the atmospheric CO
2
.  

 

5. The first column of Table A4.3 provides the ordinary least squares estimates of 

regressing the coefficients of the time dummy variables with CO
2
 atmospheric 

concentration. The coefficients are not distributed asymptotically normal due to the 

lack of stationarity of the series, so that the usual t-statistics do not apply. But we can 

use the estimated coefficients to test if the predicted errors are stationary. Even if all 

individual series are nonstationary, the linear combination of nonstationary series could 

be stationary. 

 

6. Table A4.3 shows the results of the tests for stationarity or cointegration using 

the series of predicted errors. Since the time series is quite short, we use an unrestricted 

autoregressive distributed lag model, which has shown to be appropriate for time 

series between 100 and 500 observations (Box and Tiao 1975; Simonton 1977). Both 

the Dickey-Fuller and Dickey-Fuller generalized least squares test whether a unit root is 

present in the series of the predicted errors. Tabulated critical values at 1% and 5% are 

more exigent than usual t-test (MacKinnon 1994, 2010; Elliott, Rothenberg, and Stock 

1996). The Dickey-Fuller and the Dickey-Fuller generalized least squares statistics allow 

rejection of the null hypothesis that the series have a unit root. The time dummy 

coefficients and the global variables are integrated of order one (that is, the predicted 

error is stationary), suggesting that the series cointegrate. 
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Table A4.2: Estimated Coefficients of the Time Dummy Variables 

(Approach II, Stage I) 

Time Coefficient Time Coefficient Time Coefficient Time Coefficient Time Coefficient 

1970q1 

 

1979q1 0.558 1988q1 0.509 1997q1 0.782 2006q1 1.842 

1970q2 0.174 1979q2 1.000 1988q2 1.112 1997q2 1.139 2006q2 2.093 

1970q3 1.168 1979q3 0.849 1988q3 1.815 1997q3 1.473 2006q3 2.280 

1970q4 1.179 1979q4 1.021 1988q4 1.116 1997q4 1.062 2006q4 1.671 

1971q1 0.233 1980q1 0.770 1989q1 (0.432) 1998q1 1.523 2007q1 1.710 

1971q2 0.588 1980q2 0.543 1989q2 1.218 1998q2 1.343 2007q2 1.595 

1971q3 0.443 1980q3 1.360 1989q3 1.314 1998q3 1.927 2007q3 2.474 

1971q4 (0.133) 1980q4 0.393 1989q4 0.535 1998q4 1.551 2007q4 2.080 

1972q1 (0.453) 1981q1 0.728 1990q1 0.488 1999q1 1.334 2008q1 1.747 

1972q2 0.788 1981q2 0.620 1990q2 1.306 1999q2 1.424 2008q2 1.314 

1972q3 0.200 1981q3 1.202 1990q3 1.236 1999q3 2.169 2008q3 2.312 

1972q4 (0.143) 1981q4 1.418 1990q4 0.822 1999q4 1.819 2008q4 2.056 

1973q1 0.411 1982q1 0.949 1991q1 0.758 2000q1 1.434 2009q1 1.716 

1973q2 0.145 1982q2 1.017 1991q2 0.578 2000q2 1.776 2009q2 1.326 

1973q3 0.010 1982q3 1.186 1991q3 1.633 2000q3 2.010 2009q3 2.121 

1973q4 1.079 1982q4 1.018 1991q4 0.528 2000q4 1.654 2009q4 1.906 

1974q1 0.932 1983q1 0.597 1992q1 1.080 2001q1 1.309 2010q1 1.770 

1974q2 0.290 1983q2 0.890 1992q2 1.102 2001q2 1.917 2010q2 1.960 

1974q3 0.997 1983q3 1.362 1992q3 1.410 2001q3 2.263 2010q3 2.118 

1974q4 0.603 1983q4 1.145 1992q4 0.920 2001q4 1.627 2010q4 1.754 

1975q1 0.204 1984q1 0.708 1993q1 1.756 2002q1 1.537 2011q1 0.757 

1975q2 0.234 1984q2 1.027 1993q2 1.614 2002q2 1.731 2011q2 0.886 

1975q3 (0.027) 1984q3 0.972 1993q3 1.707 2002q3 2.178 2011q3 1.093 

1975q4 (0.653) 1984q4 1.149 1993q4 1.591 2002q4 1.604 2011q4 1.032 

1976q1 (0.528) 1985q1 1.236 1994q1 0.896 2003q1 1.690 2012q1 1.041 

1976q2 0.262 1985q2 1.250 1994q2 1.374 2003q2 1.453 2012q2 1.021 

1976q3 0.330 1985q3 1.041 1994q3 1.582 2003q3 1.829 2012q3 1.062 

1976q4 0.802 1985q4 1.356 1994q4 1.361 2003q4 1.470 2012q4 0.897 

1977q1 0.671 1986q1 0.740 1995q1 1.156 2004q1 1.609 2013q1 1.361 

1977q2 0.740 1986q2 1.042 1995q2 1.664 2004q2 1.808 2013q2 0.788 

1977q3 1.528 1986q3 1.339 1995q3 1.984 2004q3 1.983 2013q3 1.172 

1977q4 0.576 1986q4 0.805 1995q4 1.763 2004q4 1.518 2013q4 0.755 

1978q1 0.964 1987q1 0.952 1996q1 1.128 2005q1 1.847 

  1978q2 0.945 1987q2 0.008 1996q2 1.069 2005q2 1.843 

  1978q3 1.383 1987q3 1.328 1996q3 1.838 2005q3 2.380 

  1978q4 1.104 1987q4 1.140 1996q4 1.413 2005q4 1.860 

  ( ) = negative, q = quarter 

Notes: * significant at 10%, ** significant at 5%, ***  significant at 1%.  

Source: Asian Development Bank Independent Evaluation Department. 
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Table A4.3: Cointegration Estimates of Hydrometeorological Disasters–CO
2
 Series 

Item 
 

Level 
a 

First Diff. (D.1) 

b

 (ECM) 

CO
2
 (t) 0.0184 

 

  [0.0021] 
 

D.1 Time dummy coefficients (t-1) (𝜆̂1)  
(0.2320)*** 

  
[0.0789] 

D.1 CO
2
 (t-1) (𝑘̂1) 

 

(0.0654)*** 

  
 

[0.0109] 

D.2 CO
2
 (t-1) (𝑘̂1)  

0.0464*** 

  
[0.0114] 

Time dummy coefficients (t-1) (𝛾1) 

 

(0.3480)*** 

  
[0.0852] 

CO
2
 (t-1) (𝛾2) 

 

0.00628*** 

  
 

[0.00216] 

Constant (5.424)*** 
(1.827)** 

  [0.746] 
[0.703] 

Observations 
175 173 

Akaike information criterion  242.8 151.3 

Bayesian information criterion  249.1 170.2 

Tests for Stationarity 
 

 Dickey-Fuller (2.662)* 

 
Dickey-Fuller generalized least squares  (2.071)** 

 

( ) = negative, CO
2
 = carbon dioxide, ECM = error correction model.  

Note: Standard errors in brackets. 

a 

See Appendix 2, equation (2), 
b 

See Appendix 2, equation (5). 

* significant at 10%, ** significant at 5%, significant at 1%. 

Source: Asian Development Bank Independent Evaluation Department. 
 

 

7. In addition to the tests reported in the first column of Table A4.3, we also 

implemented a more powerful cointegration test developed by Johansen (1995) 

presented in Table A4.4. This test estimates a vector error correction model between 

hydrometeorological disasters and CO
2
 concentrations in the atmosphere. The Johansen 

test also shows clear evidence of cointegration between the series. 

 

Table A4.4: Johansen Test for Cointegration 

Rank r  Johansen Test Critical Value 1% 

    0                  27,47***         16,31 

    1                    5,70           6,51 

Note: * significant at 10%, ** significant at 5%,  *** significant at 1%. 

Source: Asian Development Bank Independent Evaluation Department. 

 

8. These tests all conclude that the two series cointegrate. However, these tests 

are not generally considered to have sufficient power when the sample size for each 

series is relatively small. When samples are small the literature recommends the use of 

autoregressive distributed lags to obtain a more reliable test for cointegration (Pesaran, 

Shin, and Smith 2001). Thus, we corroborate the existence of stationarity and 

cointegration using an error correction model, as shown in equation (5) of Appendix 2, 
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implemented using an autoregressive distributed lag. The second column in Table A4.3 

shows the estimates of the error correction model using an autoregressive distributed 

lag for the series. The coefficient of CO
2
 (t-1) (𝛾2)is positive and significant, and the 

error correction coefficient, associated with the time dummy coefficients (t-1) (𝛾1), is 

negative and significant. The statistical significance of these two coefficients implies 

there may be a nonspurious correlation between the series. Moreover, the adjustment 

process is stable due to the fact that |𝛾1| < 1 .  

 

9. The estimates of the 𝛾1 and 𝛾2 coefficients allow us to obtain a measure of the 

key coefficient 𝛽̂1
∗
 by using equation (6) in Appendix 2. Most importantly, this estimate 

of 𝛽̂1
∗
 is unbiased and distributes according to a normal distribution; this allows us to 

obtain consistent statistical inference. From the standard errors and covariances of 𝛾1 

and 𝛾2 coefficients, we derive the standard error of 𝛽̂1
∗
using the Delta method (Oehlert 

1992). Table A4.5 shows the estimated value of 𝛽̂1
∗

= 0.0180 with its standard error 

thus estimated equal to 0.0042. That is, the cointegrating coefficient is in fact positive 

and statistically significant at a 1% level of significance.  

 

Table A4.5: Cointegration—Hydrometeorological Disasters–CO
2
 Level 

 Item 

Estimated coefficients of the time dummy variables 

Short run Long run 

 

CO
2
 level 

0.0184 0.0180*** 

 

[0.0021] 

 

[0.0042] 

 

CO
2
 = carbon dioxide. 

Note: Standard errors in brackets. 

* significant at 10%, ** significant at 5%, *** significant at 1%. 

Source:  Asian Development Bank Independent Evaluation Department. 

 

10. Table A4.5 shows the short- and long-run estimates of 𝛽̂1  for 

hydrometeorological disasters. The long-run coefficient is statistically significant at 1% 

and is quite similar to the short-run coefficient. Using the 𝛽̂1,  we calculate the elasticity 

of time dummy coefficients with respect to the CO
2
 level (Table A4.6). 

 

Table A4.6: Time Dummy Coefficients and CO
2
 Level 

Item                                   CO
2
 Level 

Marginal effect (𝛽̂)           0.0180 

Average sample value of CO
2
 level (1970–2013)            360.4 

Average value of time dummy coefficients (1970–2013)              1.16 

Elasticity of time dummy coefficients for CO
2
 level               5.6 

CO
2
 = carbon dioxide.  

Source: Asian Development Bank Independent Evaluation Department. 

 

11. Next, we calculate the simulated variation in disasters due to current observed 

rates of increase of CO
2
 concentration level using 2010–2013 as the baseline (Table 

A4.7). Thus, if atmospheric CO
2
 levels continue increasing at the same rate as in this 

period, the number of intense hydrometeorological disasters per quarter per country 

would increase by 0.035 events; that is, the number of disasters would double in 7 

years.  
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Table A4.7: CO
2
 Concentration and Hydrometeorological Disasters: 

Simulated Variation, 2010–2013 

Item CO
2
 Level 

For Simulation  
 

CO
2 
 stock (ppm)        395 

Average disaster occurrence per year      0.212 

Average value of time dummy coefficients      1.216 

Current Annual Increase CO
2
  stock (ppm)                                                2.0 

Simulated variation in quarterly disasters due to  

current rate of increases in global variables 
    0.035 

CO
2
 = carbon dioxide, ppm = parts per million.  

Source: Asian Development Bank Independent Evaluation Department.  

 

12. Cointegration may show the existence of meaningful correlations but not 

necessarily of causality. If a meaningful correlation between the series exists then our 

approach to ascertaining causality relies on the observation that if two variables exhibit 

a nonspurious correlation there must be at least one direction of causality between 

them (Asteriou and Hall 2011; Granger 1988). The next step, therefore, is to establish 

whether prior reasoning and scientific knowledge may allow us to discard one of the 

directions of causality. If so, we can conclude without further statistical tests which is 

the causal relation associated with the existence of a nonspurious correlation between 

the two series. This is the approach that we use here. This observation leads us to the 

following conclusion: it is highly implausible that hydrometeorological disasters cause 

the accumulation of carbon in the atmosphere (of course, in the case of other disasters 

such as volcanic eruptions this may not be true). Hence, it must be the case that the 

causal direction is from atmospheric carbon accumulation to hydrometeorological 

disasters. 

 

13. To test causality in the long run, we follow Clive and Lin 1995. Using equation 

(2) in Box 3 in Appendix 2 and defining 𝑧𝑡 = (𝑦𝑡
𝑥𝑡

), we estimate that the best model for 

our variables is which has five lags (i.e., 𝑙 = 5). Thus,  

 

Δ𝑧𝑡 = 𝜂𝜔′𝑧𝑡−5 + ∑ Γ𝑖

4

𝑖=1
Δ𝑧𝑡−1 + 𝛿 ∙ 𝑡 + 𝑣 + 𝜀𝑡. 

 

14. We verified if the coefficients of {Γ𝑖}𝑖=1
4

 for each element of 𝑦𝑡  are jointly 

different from zero. If this fact can be rejected it will give us evidence of causality in the 

long run. Table A4.8 shows the results. When the causality from CO
2
 to coefficient of 

dummy time variables is tested, it is possible to reject the null hypothesis at 1%. When 

the causality from coefficient of dummy time variables to CO
2
 is tested, it is not 

possible to reject the null hypothesis. Therefore, we conclude that the direction of 

causality must go from atmospheric CO
2
 accumulation to hydrometeorological disasters.  
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Table A4.8: Test of Granger Causality in the Long Run 

 

𝒚𝒕 𝒙𝒕 

Hypothesis 
CO

2
→Coefficient of time dummy 

variables 

Coefficient of time dummy 

variables→ CO
2
 

𝐻0 Γ1 = 0 Γ1 = 0 

 

Γ2 = 0 Γ2 = 0 

 

Γ3 = 0 

Γ4 = 0 

Γ3 = 0 

Γ4 = 0 

F-test  33.68*** 2.43 

p-value 0.000 0.6578 

CO
2
 = carbon dioxide. 

Note: * significant at 10%, ** significant at 5%, *** significant at 1%. 

Source: Asian Development Bank Independent Evaluation Department. 

  



 

APPENDIX 5. Economic Effects of Disasters 

 

 

1. We estimate the model using annual data as no quarterly data for gross 

domestic product (GDP) are available. This sample contains the same countries that we 

used to determine the variables which affect intense hydrometeorological disasters 

(Appendix 1). Table A5.1 shows the main statistics for the 184 countries included in the 

analysis. 

 

Table A5.1: Descriptive Statistics—184 Countries  

with an Intense Hydrometeorological Disaster 

Variable Mean Std. Dev. Min. Max. Observations 

Hydro disaster dummy 0.629 1.626 0 28.00 6,754 

Proportion of deaths  

(one per 10,000 people) 0.0327 0.521 0 26.52 6,754 

GDP per capita Growth (%) 

 

3.587 

 

6.116 

 

(64.04) 

 

106.2 

 

6,754 

 

 ( ) = negative, GDP = gross domestic product, Std. Dev. = standard deviation. 

 Source: Asian Development Bank Independent Evaluation Department.  

 

Table A5.2: Per Capita GDP Growth and Number of Hydrometeorological Disasters 

Item (1) (2) (3) 

L. Per capita GDP growth      0.0638***     0.0640***      0.0640*** 

 [0.0135] [0.0135] [0.0135] 

L2. Per capita GDP growth (0.000217) (0.000203) (0.000117) 

 [0.0129] [0.0129] [0.0129] 

L.Ln GDP pc (28.06)*** (28.08)*** (28.11)*** 

 [1.023] [1.023] [1.024] 

L. N° Hydro disasters (0.0847) (0.0830) (0.0755) 

 [0.0814] [0.0814] [0.0819] 

L2. N° Hydro disasters  0.0904 0.0918 

  [0.0816] [0.0816] 

L3. N° Hydro disasters   0.0691 

   [0.0848] 

L. Proportion of deaths unrelated to disaster (0.0653)*** (0.0647)*** (0.0645)*** 

 [0.0170] [0.0170] [0.0170] 

Net effect (0.0847) 0.0073 0.0850 

 [0.0814] [0.1163] [0.1506] 

Observations 6,669 6,669 6,668 

Akaike Information Criterion 41,164.53 41,162.36 41,154.34 

Bayesian Information Criterion 49,378.44 49,383.07 49,381.67 

 ( ) = negative, GDP = gross domestic product, L =  lag operator (1-year lag). 

 Note: Time-varying country-specific effect estimation controls for 5-year variable effects. Standard errors are 

in brackets. 

 * = significant at 10%, ** = significant at 5%, *** = significant at 1%.  

 Source: Asian Development Bank Independent Evaluation Department.  

 

2. Table A5.2 shows the time-varying country-specific effect estimates of the 

effects of the number of intense hydrometeorological disasters on per capita GDP 

growth without distinguishing human capital versus physical capital losses. As can be 

seen, there are no significant parameters. One interpretation is that the likely positive 

effects of disasters due to the rebuilding of physical capital losses on economic activity 

when excess productive capacity exists may be offset by the negative effects of the loss 

of human capital. 
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3. That is why here we focus exclusively on the human capital losses caused by 

disasters (Table A5.3). In particular, we use the number of deaths induced by disasters 

as a proportion of a country’s total population, instead of merely the number of 

disasters as the key explanatory variable. In sharp contrast with the results in Table A5.2, 

using the proportion of deaths over the total population caused by disasters, the 

effects of the first, second, and third lags of this variable on per capita GDP growth are 

all negative and almost all of them are statistically significant. The net effect of the 

three lags is also negative and significant. 

 

Table A5.3: Per Capita GDP Growth and Proportion of Deaths Due to Disasters 

Item (1) (2) (3) 

L. Per capita GDP growth  0.0639***  0.0634***  0.0632*** 

 [0.0135] [0.0135] [0.0135] 

L2. Per capita GDP growth (0.0000917) 0.0002190 0.0002020 

 [0.0129] [0.0129] [0.0129] 

L. Ln GDP pc (28.03)*** (28.07)*** (28.06)*** 

 [1.023] [1.023] [1.023] 

L. Proportion of deaths due to disaster (0.195) (0.226)* (0.248)* 

 [0.135] [0.136] [0.136] 

L2. Proportion of deaths due to disaster  (0.238)* (0.273)** 

  [0.131] [0.132] 

L3. Proportion of deaths due to disaster   (0.189)** 

   [0.0932] 

L. Proportion of deaths unrelated to disaster (0.0651)*** (0.0686)*** (0.0681)*** 

 [0.0170] [0.0171] [0.0171] 

Net effect of disaster-induced deaths (0.195) (0.464)*** (0.709)*** 

 [0.135] [0.200] [0.233] 

Observations 6,669 6,669 6,668 

Akaike Information Criterion 41,164.53 41,162.36 41,154.34 

Bayesian Information Criterion 49,378.44 49,383.07 49,381.67 

( ) =negative, GDP = gross domestic product, L = lag operator (1-year lag). 

Notes: TVCE controls for 5-year variable country-specific effects. Standard errors are in brackets. 

* = significant at 10%, ** = significant at 5%, *** = significant at 1%. 

Source: Asian Development Bank Independent Evaluation Department.  

 

4. However, the relationship between economic growth and deaths may be 

affected by reverse causality, because it is plausible to assume that economic growth 

reduces the rate of population death. To mitigate this problem, we also control for the 

proportion of deaths (over the total population) not due to disasters, finding a negative 

relationship as expected. The key issue is that even after controlling for deaths not due 

to disasters, the coefficient of the variable proportion of deaths caused by disasters is 

still negative and highly significant. Moreover, there is an extremely low correlation of 

deaths caused by disasters and deaths due to other factors (correlation coefficient 

0.002), which reinforces our hypotheses that causality goes from the proportion of 

disaster-induced deaths to economic growth and not the other way around. In addition, 

the regression in Table A5.3 also controls for country per capita income to reflect that 

per capita income and economic growth may be (negatively) correlated 

 

5. An important implication of the results is that the effect of deaths due to 

disasters on economic growth is much larger than the effects of normal mortality. This 

may reflect the fact that disaster-induced deaths are more traumatic, especially because 

they often involve a greater proportion of younger people at their peak productive age. 

Also, disaster-induced deaths tend to be more economically disruptive because they are 

often more unexpected than normal deaths. 
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6. Using the coefficient equal to –0.709 obtained when we use three lagged 

effects as reported in the last column of Table A5.3, we obtain that a 1% increase of 

disaster-induced deaths is likely to cause the growth rate of the representative country 

to decline by 0.0064% over the first 3 years after the disaster. Also, it appears that the 

negative effect of disaster deaths on economic growth tends to persist for at least 3 

years.  

 

7. This analysis closes by measuring the impact of the accumulation of carbon 

dioxide (CO
2
) in the atmosphere on economic growth. We start by using the elasticity 

of disasters for CO
2
 accumulation as reported earlier. Next, we estimate the impact of 

disasters on deaths as a proportion of the total country population. Using this measure 

and the elasticity of disasters, we can estimate the effect of CO
2
 accumulation on the 

proportion of disaster-induced deaths. Finally, we combine this last effect with the 

elasticity of economic growth for disaster-induced deaths to measure the net elasticity 

of growth for atmospheric CO
2
 accumulation. That is, we use the following expression 

to estimate the net effect of CO
2
 accumulation on economic growth: 

 

𝜉𝐺𝑑𝑝𝐺𝑟𝑜𝑤𝑡ℎ,𝐶𝑂2
= 𝜉𝐺𝑑𝑝𝐺𝑟𝑜𝑤𝑡ℎ,𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 ∙ 𝜉𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠,𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟𝑠 ∙ 𝜉𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟𝑠,𝐶𝑂2 , 

 

where 𝜉𝐺𝑑𝑝𝐺𝑟𝑜𝑤𝑡ℎ,𝐶𝑂2
, 𝜉𝐺𝑑𝑝𝐺𝑟𝑜𝑤𝑡ℎ,𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 , 𝜉𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠,𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟𝑠  and 

𝜉𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟𝑠,𝐶𝑂2
  

 

represent the elasticities of growth for CO
2 
accumulation, growth for the proportion of 

deaths, proportion of deaths for the number of disasters, and number of disasters for 

CO
2
 accumulation, respectively. 

   

8. Table A5.4 shows details of this exercise.  We find that a 1% increase in the 

level of CO
2
 accumulated in the atmosphere causes a reduction of the rate of GDP 

growth for the average or representative country by 0.13%. This figure may seem small 

given that atmospheric CO
2
 is increasing by only 0.5% per year. However, we note that 

this effect applies to the average of all countries whether they are affected by a disaster 

or not. Moreover, if the rate of carbon accumulation in the atmosphere continues at 

the current rate, one may expect that the average rate of economic growth for all 

countries may be reduced by 1.5% in 20 years due to the increased climate-related 

disasters.   

 

Table A5.4: Elasticity of Per Capita GDP Growth for CO
2
 

Item 

Representative 

Country 

Countries with at 

least one disaster 

(2004–2013) 

𝜉𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟𝑠,𝐶𝑂2
 33.45 33.45 

𝜉𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠,𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟𝑠 0.6 0.6 

𝜉𝐺𝑑𝑝𝐺𝑟𝑜𝑤𝑡ℎ,𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 (0.0066) (0.0073) 

𝜉𝐺𝑑𝑝𝐺𝑟𝑜𝑤𝑡ℎ,𝐶𝑂2
 (0.13) (0.15) 

     ( ) = negative, GDP = gross domestic product. 

       Source: Asian Development Bank Independent Evaluation Department. 
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